Retrieval of subpixel Tamarix canopy cover from Landsat data along the Forgotten River using linear and nonlinear spectral mixture models

نویسندگان

  • J. L. Silván-Cárdenas
  • L. Wang
چکیده

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: a b s t r a c t a r t i c l e i n f o Repeatable approaches for mapping saltcedar (Tamarix spp.) at regional scales, with the ability to detect low density stands, is crucial for the species' effective control and management, as well as for an improved understanding of its current and potential future dynamics. This study had the objective of testing subpixel classification techniques based on linear and nonlinear spectral mixture models in order to identify the best possible classification technique for repeatable mapping of saltcedar canopy cover along the Forgotten River reach of the Rio Grande. The suite of methods tested were meant to represent various levels of constraints imposed in the solution as well as varying levels of classification details (species level and landscape level), sources for endmembers (space-borne multispectral image, airborne hyperspectral image and in situ spectra measurements) and mixture modes (linear and nonlinear). A multiple scattering approximation (MSA) model was proposed as a means to represent canopy (image) reflectance spectra as a nonlinear combination of subcanopy (field) reflectance spectra. The accuracy of subpixel canopy cover was assessed through a 1-m spatial-resolution hyperspectral image and field measurements. Results indicated that: 1) When saltcedar was represented by one single image spectrum (endmember), the unconstrained linear spectral unmixing with post-classification normalization produced comparable accuracy (OA = 72%) to those delivered by partially and fully constrained linear spectral unmixing (63–72%) and even by nonlinear spectral unmixing (73%). 2) The accuracy of the fully constrained linear spectral unmixing method increased (from 67% to 77%) when the classes were represented with several image spectra. 3) Saltcedar canopy reflectance showed the strongest nonlinear relationship with respect to subcanopy reflectance, as indicated through a range of estimated canopy recollision probabilities. 4) Despite the considerations of these effects on canopy reflectance, the inversion of the nonlinear spectral mixing model with subcanopy reflectance (field) measurements yielded slightly lower accuracy (73%) than the linear counterpart (77%). Implications of these results for region-wide monitoring of saltcedar invasion are also discussed. Invasive species threats, which have been recognized as an important component of global environmental change (Drake et al., 1989; Vitousek et al., …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partially and Fully Constrained Least Squares Linear Spectral Mixture Models for Subpixel Land Cover Classification Using Landsat Data

Land cover (LC) refers to the physical state of the Earth's surface in terms of natural environment such as soil, vegetation, water, etc. Since most LC features occur at spatial scales much finer than the resolution of the primary satellites, LC mapping at subpixel level is required to obtain abundance maps of each category in a given pixel. These abundance or fractional maps are obtained using...

متن کامل

A Quantitative Assessment of Forest Cover Change in the Moulouya River Watershed (Morocco) by the Integration of a Subpixel-Based and Object-Based Analysis of Landsat Data

A quantitative assessment of forest cover change in the Moulouya River watershed (Morocco) was carried out by means of an innovative approach from atmospherically corrected reflectance Landsat images corresponding to 1984 (Landsat 5 Thematic Mapper) and 2013 (Landsat 8 Operational Land Imager). An object-based image analysis (OBIA) was undertaken to classify segmented objects as forested or non...

متن کامل

Cropland distributions from temporal unmixing of MODIS data

Knowledge of the distribution of crop types is important for land management and trade decisions, and is needed to constrain remotely sensed estimates of variables, such as crop stress and productivity. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers a unique combination of spectral, temporal, and spatial resolution compared to previous global sensors, making it a good candidat...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

Nonlinear spectral mixture effects for photosynthetic/non-photosynthetic vegetation cover estimates of typical desert vegetation in western China

Desert vegetation plays significant roles in securing the ecological integrity of oasis ecosystems in western China. Timely monitoring of photosynthetic/non-photosynthetic desert vegetation cover is necessary to guide management practices on land desertification and research into the mechanisms driving vegetation recession. In this study, nonlinear spectral mixture effects for photosynthetic/no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010